Two cell cycle blocks caused by iron chelation of neuroblastoma cells: separating cell cycle events associated with each block
نویسندگان
چکیده
Studies have presented evidence that besides the well described S phase block, treatment of cancer cell lines with the iron chelator deferrioxamine (DFO) also results in an earlier block in G1 phase. In this article, measurements of cell cycle regulatory proteins define this block at a very specific point in G1. DFO treatment results in markedly decreased cyclin A protein levels. Cyclin E levels that accumulate in early to mid-G1 are increased in cells treated with DFO as compared to the resting cells. The DFO S phase block is shown after cells are arrested at G1/S by (aphidicolin) then released into DFO. The same S phase block occurs with DFO treatment of a neuroblastoma cell line relatively resistant to the G1 DFO block. These experiments clearly differentiate the S phase DFO block from the earlier block pinpointed to a point in mid-G1, before G1/S when cyclin E protein increases but before increased cyclin A synthesis. Apoptosis was observed in cells inhibited by DFO at both cell cycle arrest points.
منابع مشابه
Iron depletion results in Src kinase inhibition with associated cell cycle arrest in neuroblastoma cells
Iron is required for cellular proliferation. Recently, using systematic time studies of neuroblastoma cell growth, we better defined the G1 arrest caused by iron chelation to a point in mid-G1, where cyclin E protein is present, but the cyclin E/CDK2 complex kinase activity is inhibited. In this study, we again used the neuroblastoma SKNSH cells lines to pinpoint the mechanism responsible for t...
متن کاملHerpes Simplex Virus Type 1 Latency-Associated Transcript Reduces Human Neuroblastoma Cell Proliferation
Background and Aims: The latency-associated transcript (LAT) transcribed by latent Herpes Simplex Virus type-1 in neuron cells are able to influence their host cell pathways. While the most of previous studies were focused on anti-apoptotic effects of LAT, our investigation is making an effort to explore LAT potency on cell cycle pathway in neuroblastoma cell lines. Methods: The evaluation of L...
متن کاملEffect of Heavy Metals on Silencing of Engineered Long Interspersed Element-1 Retrotransposon in Nondividing Neuroblastoma Cell Line
Background: L1 retrotransposons are the most active mobile DNA elements in human genome. Unregulated L1 retrotransposition may have deleterious effect by disrupting vital genes and inducing genomic instabilities. Therefore, human cells control L1 elements by silencing their activities through epigenetic mechanisms. It has been shown that cell division and heavy metals stimulate the frequency of...
متن کاملTranslational downregulation of HSP90 expression by iron chelators in neuroblastoma cells.
Iron is an essential cellular nutrient, being a critical cofactor of several proteins involved in cell growth and replication. Compared with normal cells, neoplastic cells have been shown to require a greater amount of iron, thus laying the basis for the promising anticancer activity of iron chelators. In this work, we evaluated the effects of molecules with iron chelation activity on neuroblas...
متن کاملNeuroblastoma sensitivity to growth inhibition by deferrioxamine: evidence for a block in G1 phase of the cell cycle.
Iron (Fe) is known to be necessary for cellular proliferation. Previous studies have suggested that neuroblastoma cells appear to be relatively sensitive to growth inhibition by a specific Fe chelator, deferrioxamine (DFO), in vitro. Also, DFO has been recently used for the treatment of neuroblastoma patients. In this paper we demonstrate that neuroblastoma cell proliferation in vitro is extrem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2013